外观为白色结晶或无定形粉末。它首先是由美国化学家Wall等人于1967年从短叶红豆杉中分离得到的。它能够与微管蛋白结合,促进微管蛋白聚合装配成微管二聚体,从而抑制细胞微管解聚,阻止细胞快速繁殖。临床试验表明,紫杉醇用于治疗转移性卵巢癌及乳腺癌有显著疗效,另外用于治疗小细胞和非小细胞肺癌、宫颈癌、抗化疗白血病等也有一定疗效。紫杉醇只存在于红豆杉属植物中,本属共11种,我国有4种及1个变种,它们分别是云南红豆杉、西藏红豆杉(又名喜马拉雅红豆杉)、中国红豆杉、南方红豆杉(又名美丽红豆杉)。这些植物中除含紫杉醇外,还含有多种其他紫杉烷类二萜。
紫杉醇的制造方法有三种。第一种是合成法,第二种是细菌培养法,第三种是从红豆杉中直接分离制取。前两种方法虽已取得重大研究成果,但均未实现产业化,目前从天然或栽培的红豆杉中分离仍是生产紫杉醇的主要途径。其分离过程一般是甲醇或乙醇浸出(或超离界提取)一己烷脱酯一二氯甲烷或氯仿萃取得粗提物一多次硅胶柱层析一制备性HPLC、TLC、HSCCC纯化一重结晶得产品。由于硅胶柱层析很难将紫杉醇与另一衍生物Cephal omanmne分开且产品收率低,Kingston等人采用03选择性氧化Cepha-lomannine分子中的烯键,然后再经硅胶柱层析将紫杉醇纯化。近年来,采用高分子树脂进行红豆杉粗提物的脱色及分离取得很大进度,克服了原各种分离方法收率低、产量小、成本高、生长周期长等问题。
可用于治疗转移性卵巢癌及乳腺癌;也用于治疗小细胞和非细胞肺癌、宫颈癌、抗化疗白血病等。
中文名 | 紫杉醇 |
英文名 | Paclitaxel |
别名 | 泰素 特素 紫彬醇 紫杉醇 合成紫杉醇 红豆杉提取物 TAXOL紫杉醇 PACLITAXEL 紫杉醇 浆果赤霉素III,,泰素,紫素,特素 |
英文别名 | taxal taxol a PACLITAXEL Paclitaxel PACLITAXOL Paclitaxelx Paclitaxel HCL PACLITAXEL, TAXUS SPECIES Paclitaxel(natural crude) PACLITAXEL, TAXUS BREVIFOLIA N-BENZYL-BETA-PHENYLISOSERINE ESTER 7,11-methano-5h-cyclodeca[3,4]benz[1,2-b]oxete benzenepropanoic acid deriv. |
CAS | 33069-62-4 |
EINECS | 608-826-9 |
化学式 | C47H51NO14 |
分子量 | 853.92 |
InChI | InChI=1/C47H51NO14/c1-25-31(60-43(56)36(52)35(28-16-10-7-11-17-28)48-41(54)29-18-12-8-13-19-29)23-47(57)40(61-42(55)30-20-14-9-15-21-30)38-45(6,32(51)22-33-46(38,24-58-33)62-27(3)50)39(53)37(59-26(2)49)34(25)44(47,4)5/h7-21,31-33,35-38,40,51-52,57H,22-24H2,1-6H3,(H,48,54)/t31?,32-,33+,35?,36?,37+,38?,40?,45+,46-,47+/m0/s1 |
InChIKey | RCINICONZNJXQF-MZXODVADSA-N |
密度 | 0.200 |
熔点 | 213°C (dec.)(lit.) |
沸点 | 774.66°C (rough estimate) |
比旋光度 | D20 -49° (methanol) |
闪点 | 9℃ |
水溶性 | 0.3mg/L(37 ºC) |
蒸汽压 | 0mmHg at 25°C |
溶解度 | 甲醇: 50毫克/毫升,澄清,无色 |
折射率 | -49 ° (C=1, MeOH) |
酸度系数 | 11.90±0.20(Predicted) |
存储条件 | 2-8°C |
稳定性 | 稳定。与强氧化剂不相容。可燃。 |
外观 | 粉末 |
颜色 | white |
最大波长(λmax) | 227nm(MeOH)(lit.) |
Merck | 14,6982 |
BRN | 1420457 |
物化性质 | 从甲醇析出针状结晶或无定形粉末。熔点213~216℃(分解)。[α]D20-49°(甲醇)。UV最大吸收(甲醇):227,273nm(ε29800,1700)。 |
MDL号 | MFCD00869953 |
危险品标志 | Xn - 有害物品 |
风险术语 | R37/38 - 刺激呼吸系统和皮肤+B52。 R41 - 对眼睛有严重伤害。 R42/43 - 吸入及皮肤接触可能致敏。 R62 - 有损害生育能力的危险。 R68 - 可能有不可逆后果的危险。 R40 - 少数报道有致癌后果。 R48 - 长期接触严重危害健康。 R20/21/22 - 吸入、皮肤接触及吞食有害。 R68/20/21/22 - |
安全术语 | S22 - 切勿吸入粉尘。 S26 - 不慎与眼睛接触后,请立即用大量清水冲洗并征求医生意见。 S36/37/39 - 穿戴适当的防护服、手套和护目镜或面具。 S45 - 若发生事故或感不适,立即就医(可能的话,出示其标签)。 |
危险品运输编号 | 1544 |
WGK Germany | 3 |
RTECS | DA8340700 |
FLUKA BRAND F CODES | 10-21 |
海关编号 | 29329990 |
Hazard Class | 6.1(b) |
Packing Group | III |
上游原料 | 乙酸乙酯 硅藻土 三乙胺三氢氟酸盐 苯甲酰氯 碳酸氢钠 苯甲醛二甲缩醛 三甲基氯硅烷 氢氟酸 |
参考资料 展开查看 | 1. 李昆太 彭卫福 周佳 等. 一株产紫杉醇的南方红豆杉内生菌的分离与鉴定[J]. 江西农业大学学报 2013 035(001):184-188. 2. 马生军 刘建慧 马留纯 王颖 曹雪琴 罗建民.不同产地及生长年限曼地亚红豆杉中10-脱乙酰基巴卡亭Ⅲ、三尖杉宁碱、紫杉醇量的比较分析[J].中草药 2017 48(23):4979-4985. 3. 王光杰 顾俊峰 肖昀. 代谢型谷氨酸受体5在周围神经痛大鼠脊髓和背根神经节的表达[J]. 中华实用诊断与治疗杂志 2019(11). 4. 尹杨峰 蒋磊.千金藤素通过MAT2B调节MAPK信号通路对宫颈癌细胞增殖和凋亡的影响[J].中国医药生物技术 2020 15(02):183-189. 5. 褚冰, 丁敏, 易琼. 抗EGFR单克隆抗体偶联载紫杉醇纳米粒对胃癌肿瘤靶向性能力研究[J]. 贵州医药, 2016(6期):563-566. 6. 蒋爱, 李国源, 王鑫,等. 星点设计-效应面法优化紫杉醇-白桦脂酸混合纳米混悬剂[J]. 中草药, 2019, 50(04):852-859. 7. 宁慧, 莫微. 校正超滤法测定木香烃内酯和去氢木香内酯的大鼠血浆蛋白结合率[J]. 中国现代中药, 2015, 017(004):321-325,330. 8. 刘建慧,马生军,马留纯,曹雪琴,梁朔,吕苗,王颖,王万勇,罗建民.海南和四川不同生长年限曼地亚红豆杉3种紫杉烷类活性成分的比较研究[J].中医药信息,2017,34(06):9-13. 9. 王永红, 于洪丽, 秦梦,等. 紫杉醇/油酰壳聚糖纳米粒的理化特性及肺急性毒性评价[J]. 中国药学杂志, 2018, 053(017):1485-1491. 10. 李情, 姚微, 杨超,等. 紫杉醇对CHMm细胞G2/M期的阻滞及对周期相关因子的影响[J]. 中国兽医科学, 2013, 043(012):1306-1312. 11. 周怡梅, 金莹, 吴磊,等. 绿原酸对紫杉醇致小鼠外周神经痛的影响[J]. 湖北科技学院学报(医学版), 2019, 033(003):P.188-191. 12. 白雅竹, 郑志忠, 陈清智,等. 非洲马铃果4种吲哚类生物碱的体外抗肿瘤效果[J]. 亚热带植物科学, 2019(3). 13. 齐志文,周昊,陈虹霞,张昌伟,邓涛,王成章.漆酚基BPAU-NH_2-Gal紫杉醇载药胶束的pH响应性及其体外性能[J].林产化学与工业,2020,40(05):121-128. 14. 彭文,范长玲,张浩.lncRNA GAS6-AS2靶向miR-125a-3p调控肺癌A549细胞紫杉醇敏感性[J].中国肿瘤生物治疗杂志,2021,28(01):23-30. 15. Peng, Z.-x., Wang, Y., Gu, X., Wen, Y.-y. and Yan, C. (2013), A platform for fast screening potential anti-breast cancer compounds in traditional Chinese medicines. Biomed. Chromatogr., 27: 1759-1766. https://doi.org/10.1002/bmc.2990 16. Wu, Haoan, et al. "Injectable magnetic supramolecular hydrogel with magnetocaloric liquid-conformal property prevents post-operative recurrence in a breast cancer model." Acta biomaterialia 74 (2018): 302-311.https://doi.org/10.1016/j.actbio.2018.04.052 17. LIU, Qing-Shan, et al. Novel Beta-Tubulin-Immobilized Nanoparticles Affinity Material for Screening β-Tubulin Inhibitors from a Complex Mixture. ACS applied materials & interfaces, 2017, 9.7: 5725-5732.https://doi.org/10.1021/acsami.6b13477 18. Xv L, Qian X, Wang Y, Yu C, Qin D, Zhang Y, Jin P, Du Q. Structural Modification of Nanomicelles through Phosphatidylcholine: The Enhanced Drug-Loading Capacity and Anticancer Activity of Celecoxib-Casein Nanoparticles for the Intravenous Delivery of Celec 19. Liu K, Chen W, Yang T, et al. Paclitaxel and quercetin nanoparticles co-loaded in microspheres to prolong retention time for pulmonary drug delivery. Int J Nanomedicine. 2017;12:8239-8255. Published 2017 Nov 13. doi:10.2147/IJN.S147028 20. Peng, Zhang-xiao, et al. "Metabolic transformation of breast cancer in a MCF-7 xenograft mouse model and inhibitory effect of volatile oil from Saussurea lappa Decne treatment." Metabolomics 11.3 (2015): 636-656. 21. Ma, Zhe, et al. "Dual drug-loaded nano-platform for targeted cancer therapy: toward clinical therapeutic efficacy of multifunctionality." Journal of nanobiotechnology 18.1 (2020): 1-24.https://doi.org/10.1186/s12951-020-00681-8 22. Shu, Jie, et al. "BTBD7 downregulates E-cadherin and promotes epithelial-mesenchymal transition in lung cancer." BioMed research international 2019 (2019).https://doi.org/10.1155/2019/5937635 23. Li, Xiaowei, et al. "Biocatalysis of MnO2-Mediated Nanosystem for Enhanced Multimodal Therapy and Real-Time Tracking." ACS Sustainable Chemistry & Engineering 8.35 (2020): 13206-13214.https://doi.org/10.1021/acssuschemeng.0c02367 24. Shen, H., Zhou, T. & Hu, J. A high-throughput QCM chip configuration for the study of living cells and cell-drug interactions. Anal Bioanal Chem 409, 6463–6473 (2017). https://doi.org/10.1007/s00216-017-0591-4 25. [IF=9.229] Qing-Shan Liu et al."Novel Beta-Tubulin-Immobilized Nanoparticles Affinity Material for Screening β-Tubulin Inhibitors from a Complex Mixture."Acs Appl Mater Inter. 2017;9(7):5725–5732 26. [IF=8.947] Haoan Wu et al."Injectable magnetic supramolecular hydrogel with magnetocaloric liquid-conformal property prevents post-operative recurrence in a breast cancer model."Acta Biomater. 2018 Jul;74:302 27. [IF=8.947] Yuan Guo et al."A light-controllable specific drug delivery nanoplatform for targeted bimodal imaging-guided photothermal/chemo synergistic cancer therapy."Acta Biomater. 2018 Oct;80:308 28. [IF=8.198] Yuchu He et al."Regulatory Mechanism of Localized Surface Plasmon Resonance Based on Gold Nanoparticles-Coated Paclitaxel Nanoliposomes and Their Antitumor Efficacy."Acs Sustain Chem Eng. 2018;6(10):13543–13550 29. [IF=6.4] Kang Liu et al."Paclitaxel and quercetin nanoparticles co-loaded in microspheres to prolong retention time for pulmonary drug delivery."Int J Nanomed. 2017; 12: 8239–8255 30. [IF=4.411] Li Yang et al."Seasonal Dynamics of Metabolites in Needles of Taxus wallichiana var. mairei."Molecules. 2016 Oct;21(10):1403 31. [IF=4.29] Peng Zhang-xiao et al."Metabolic transformation of breast cancer in a MCF-7 xenograft mouse model and inhibitory effect of volatile oil from Saussurea lappa Decne treatment."Metabolomics. 2015 Jun;11(3):636-656 32. [IF=4.142] Shen Haibo et al."A high-throughput QCM chip configuration for the study of living cells and cell-drug interactions."Anal Bioanal Chem. 2017 Nov;409(27):6463-6473 33. [IF=1.902] Zhang-xiao Peng et al."A platform for fast screening potential anti-breast cancer compounds in traditional Chinese medicines."Biomed Chromatogr. 2013 Dec;27(12):1759-1766 34. [IF=1.902] Zhangxiao Peng et al."Study on the pharmacokinetics and metabolism of costunolide and dehydrocostus lactone in rats by HPLC-UV and UPLC-Q-TOF/MS."Biomed Chromatogr. 2014 Oct;28(10):1325-1334 35. [IF=13.273] Yuchu He et al."Tumor hypoxia relief overcomes multidrug resistance and immune inhibition for self-enhanced photodynamic therapy."Chem Eng J. 2019 Nov;375:122079 36. [IF=8.198] Xiaowei Li et al."Biocatalysis of MnO2-Mediated Nanosystem for Enhanced Multimodal Therapy and Real-Time Tracking."Acs Sustain Chem Eng. 2020;8(35):13206–13214 37. [IF=7.79] Shuangyu Liu et al."Paclitaxel-loaded magnetic nanocrystals for tumor neovascular-targeted theranostics: an amplifying synergistic therapy combining magnetic hyperthermia with chemotherapy."Nanoscale. 2021 Feb;13(6):3613-3626 38. [IF=7.328] Yonghong Wang et al."Targeted delivery of quercetin by nanoparticles based on chitosan sensitizing paclitaxel-resistant lung cancer cells to paclitaxel."Mat Sci Eng C-Mater. 2021 Feb;119:111442 39. [IF=6.843] Wenyuan Wang et al."Melanin-loaded biocompatible photosensitive nanoparticles for controlled drug release in combined photothermal-chemotherapy guided by photoacoustic/ultrasound dual-modality imaging."Biomater Sci-Uk. 2019 Sep;7(10):4060-4074 40. [IF=6.529] Yue Xiao et al."Predicting the herbal medicine triggering innate anti-tumor immunity from a system pharmacology perspective."Biomed Pharmacother. 2021 Nov;143:112105 41. [IF=6.419] Chunpeng He et al."Microfluidic-based fabrication and characterization of drug-loaded PLGA magnetic microspheres with tunable shell thickness."Drug Deliv. 2021;28(1):692-699 42. [IF=6.321] Zhe Ma et al."Enhanced Anticancer Efficacy of Dual Drug-Loaded Self-Assembled Nanostructured Lipid Carriers Mediated by pH-Responsive Folic Acid and Human-Derived Cell Penetrating Peptide dNP2."Pharmaceutics. 2021 May;13(5):600 43. [IF=6.15] Zhang Bing-bing et al."Lipid/PAA-coated mesoporous silica nanoparticles for dual-pH-responsive codelivery of arsenic trioxide/paclitaxel against breast cancer cells."Acta Pharmacol Sin. 2021 Apr;42(5):832-842 44. [IF=6.126] Weiyi Zhang et al."Cinnamaldehyde Enhances Antimelanoma Activity through Covalently Binding ENO1 and Exhibits a Promoting Effect with Dacarbazine."Cancers. 2020 Feb;12(2):311 45. [IF=5.682] Chao Huang et al."Systems pharmacology dissection of Epimedium targeting tumor microenvironment to enhance cytotoxic T lymphocyte responses in lung cancer."Aging-Us. 2021 Jan 31; 13(2): 2912–2940 46. [IF=5.091] Liting Guo et al."Preclinical Assessment of Paclitaxel- and Trastuzumab-Delivering Magnetic Nanoparticles Fe3O4 for Treatment and Imaging of HER2-Positive Breast Cancer."Front Med-Lausanne. 2021; 8: 738775 47. [IF=5.076] Liuli Xv et al."Structural Modification of Nanomicelles through Phosphatidylcholine: The Enhanced Drug-Loading Capacity and Anticancer Activity of Celecoxib-Casein Nanoparticles for the Intravenous Delivery of Celecoxib."Nanomaterials-Basel. 2020 Mar;10(3 48. [IF=4.845] Li-shang Dai et al."1H NMR-based metabonomic evaluation of the pesticides camptothecin and matrine against larvae of Spodoptera litura."Pest Manag Sci. 2021 Jan;77(1):208-216 49. [IF=4.759] Fan Zhang et al."Ligand fishing via a monolithic column coated with white blood cell membranes: a useful technique for screening active compounds in Astractylodes lancea."J Chromatogr A. 2021 Sep;:462544 50. [IF=4.411] Mengxia Wei et al."Ultrasound-Assisted Extraction of Taxifolin, Diosmin, and Quercetin from Abies nephrolepis (Trautv.) Maxim: Kinetic and Thermodynamic Characteristics."Molecules. 2020 Jan;25(6):1401 51. [IF=4.411] Xiao-Long Sun et al."Semi-Synthesis and In Vitro Anti-Cancer Evaluation of Magnolol Derivatives."Molecules. 2021 Jan;26(14):4302 52. [IF=2.928] Shulei Gong et al."RFC3 induces epithelial‑mesenchymal transition in lung adenocarcinoma cells through the Wnt/β‑catenin pathway and possesses prognostic value in lung adenocarcinoma."Int J Mol Med. 2019 Dec;44(6):2276-2288 53. [IF=2.441] Ha Yinuer et al."Herb–Drug Interaction Potential of Licorice Extract and Paclitaxel: A Pharmacokinetic Study in Rats."Eur J Drug Metab Ph. 2020 Apr;45(2):257-264 54. [IF=2.276] Shu Jie et al."BTBD7 Downregulates E-Cadherin and Promotes Epithelial-Mesenchymal Transition in Lung Cancer."Biomed Res Int. 2019;2019:5937635 55. [IF=6.4] Juan Du et al."Two-Pronged Anti-Tumor Therapy by a New Polymer-Paclitaxel Conjugate Micelle with an Anti-Multidrug Resistance Effect."Int J Nanomed. 2022; 17: 1323–1341 56. [IF=1.679] Zhong-Bo Zhou et al."Two new polycyclic polyprenylated acylphloroglucinols from Hypericum curvisepalum N. Robson."Phytochem Lett. 2022 Apr;48:43 57. [IF=4.36] Rumeng Wu et al."Preparation of the sphingolipid fraction from mycelia of Cordyceps sinensis and its immunosuppressive activity."J Ethnopharmacol. 2022 Jun;291:115126 58. [IF=6.4] Jia-Xin Cai et al."Hybrid Cell Membrane-Functionalized Biomimetic Nanoparticles for Targeted Therapy of Osteosarcoma."Int J Nanomed. 2022; 17: 837–854 59. [IF=1.779] Xin Hua et al."Combination of oridonin and TRAIL induces apoptosis in uveal melanoma cells by upregulating DR5."Int J Ophthalmol-Chi. 2021; 14(12): 1834–1842 60. [IF=4.749] Liying Xiao et al."Silk Nanocarrier Size Optimization for Enhanced Tumor Cell Penetration and Cytotoxicity In Vitro."Acs Biomater Sci Eng. 2021;XXXX(XXX):XXX-XXX 61. [IF=4.412] Zirui Zhao et al."Identification and Optimization of a Novel Taxanes Extraction Process from Taxus cuspidata Needles by High-Intensity Pulsed Electric Field."MOLECULES. 2022 Jan;27(9):3010 62. [IF=5.373] Haixu Zhou et al."A c-MWCNTs/AuNPs-based electrochemical cytosensor to evaluate the anticancer activity of pinoresinol from Cinnamomum camphora against HeLa cells."Bioelectrochemistry. 2022 Aug;146:108133 |
紫杉醇是从天然植物红豆杉属树皮中提取的单体双萜类化合物,是一种复杂的次生代谢产物, 也是目前所了解的惟一一种可以促进微管聚合和稳定已聚合微管的药物。同位素示踪表明, 紫杉醇只结合到聚合的微管上, 不与未聚合的微管蛋白二聚体反应。细胞接触紫杉醇后会在细胞内积累大量的微管,这些微管的积累干扰了细胞的各种功能,特别是使细胞分裂停止于有丝分裂期,阻断了细胞的正常分裂。 通过Ⅱ-Ⅲ临床研究,紫杉醇主要适用于卵巢癌和乳腺癌,对肺癌、大肠癌、黑色素瘤、头颈部癌、淋巴瘤、脑瘤也都有一定疗效。
治疗卵巢癌和铂类等已有抗药性的顽固性卵巢癌、乳腺癌有良好效果,对治疗前列腺癌、、头颈部癌、食管癌、生殖细胞肿瘤、子宫内膜癌、淋巴瘤、膀胱癌、上消化道癌、小细胞性和非小细胞性肺癌前景良好。
外观为白色结晶或无定形粉末。它首先是由美国化学家Wall等人于1967年从短叶红豆杉中分离得到的。它能够与微管蛋白结合,促进微管蛋白聚合装配成微管二聚体,从而抑制细胞微管解聚,阻止细胞快速繁殖。临床试验表明,紫杉醇用于治疗转移性卵巢癌及乳腺癌有显著疗效,另外用于治疗小细胞和非小细胞肺癌、宫颈癌、抗化疗白血病等也有一定疗效。紫杉醇只存在于红豆杉属植物中,本属共11种,我国有4种及1个变种,它们分别是云南红豆杉、西藏红豆杉(又名喜马拉雅红豆杉)、中国红豆杉、南方红豆杉(又名美丽红豆杉)。这些植物中除含紫杉醇外,还含有多种其他紫杉烷类二萜。
紫杉醇的制造方法有三种。第一种是合成法,第二种是细菌培养法,第三种是从红豆杉中直接分离制取。前两种方法虽已取得重大研究成果,但均未实现产业化,目前从天然或栽培的红豆杉中分离仍是生产紫杉醇的主要途径。其分离过程一般是甲醇或乙醇浸出(或超离界提取)一己烷脱酯一二氯甲烷或氯仿萃取得粗提物一多次硅胶柱层析一制备性HPLC、TLC、HSCCC纯化一重结晶得产品。由于硅胶柱层析很难将紫杉醇与另一衍生物Cephal omanmne分开且产品收率低,Kingston等人采用03选择性氧化Cepha-lomannine分子中的烯键,然后再经硅胶柱层析将紫杉醇纯化。近年来,采用高分子树脂进行红豆杉粗提物的脱色及分离取得很大进度,克服了原各种分离方法收率低、产量小、成本高、生长周期长等问题。
可用于治疗转移性卵巢癌及乳腺癌;也用于治疗小细胞和非细胞肺癌、宫颈癌、抗化疗白血病等。
多西紫杉醇是从紫杉树中提取出来的一种非常强的骨髓活性抑制剂类药物,在治疗期间须监测血细胞和血小板计数。药物作用机制与紫杉醇相似,即抑制微管的解聚,抑制细胞分裂。通过静脉输液给药治疗晚期或转移期的乳腺癌和非小细胞性肺癌。
江苏红豆集团已于三四年前投资数千万元在华东地区建起了最大的红豆杉速生林基地,总面积达7400亩,现人工栽培的红豆杉树苗早已郁郁成林,并得到联合国有关部门的好评和国内林业部领导的高度赞扬。预计今年红豆集团将开工生产紫杉醇原料药和注射剂,设计年产600万支紫杉醇注射剂,该项目已通过国家药检局和省、市药监局的验收。
另外,我国东北林区以及云贵两省一些山区也在大力发展红豆杉速生林栽培技术,在今后3~5年内,这些地方的有望形成新的红豆杉林区,从而为国内提供宝贵的紫杉醇原料药新来源。湖南、湖北等南方山区省也在建设红豆杉栽培基地,作为帮助当地农民脱贫致富的措施之一。按这一发展趋势,今后几年我国紫杉醇原料药年产量有望超过100公斤大关,从而成为世界主要紫杉醇原料药和制剂的生产大国。
从甲醇析出针状结晶或无定形粉末。熔点213~216℃(分解)。[α]D20-49°(甲醇)。UV最大吸收(甲醇):227,273nm(ε29800,1700)。
a.红外吸收:红外光谱图中的主要吸收带与对照品一致。
b.HPLC鉴别:在含量检测中,检测制备的色谱图中主峰的保留时间与标准制备色谱图中主峰的保留时间一致。
纯度:99-100%,以无水无溶剂的干燥品计.
有关物质:相关物质总≤2.0%
有机挥发性杂质:符合美国药典(USP)和中国药典(CP)有机挥发性杂质要求.
比旋度:[α]20 D=-49.0°~55.0°(10mg/mL的甲醇溶液),以无水无溶剂的干燥品计。
水分:≤4.0%
炽灼残渣:≤0.2%。
它包括a、萃取,以红豆杉为原料获得含有紫杉醇的提取物;b、去除胶质,除去提取物中的胶质杂质;c、分离纯化。
红豆杉树皮粉碎(越细越好),85%~95%酒精(料液比是多少?)35-55℃热回流浸提三次(每一次需要多少时间?),50-70℃真空减压浓缩至热测比重1.1~1.2g/ml,氯仿萃取,萃取液浓缩成膏状,得紫杉醇含量1%氯仿膏,将紫杉醇含量1%氯仿膏加氯仿溶解完全,加硅胶搅拌均匀,凉干,过筛,填装到层析柱中,氯仿-甲醇梯度洗脱,TLC检测,分段合并浓缩,得紫杉醇含量5~8%半成品,将紫杉醇含量5~8%半成品加丙酮溶解完全,加硅胶搅拌均匀,凉干,过筛,填装到层析柱中,丙酮-石油醚梯度洗脱,TLC检测,分段合并浓缩,得紫杉醇含量20~25%半成品,用丙酮-石油醚系统结晶3~4次,抽滤,50℃真空减压干燥,得紫杉醇含量75~80%半成品,16Mpa压力层析分离,TLC检测,分段合并浓缩,目标段浓缩物丙酮-石油醚结晶,抽滤,干燥,得紫杉醇含量≥99.5%成品。
高压硅胶层析柱层析去除胶质,同时将紫杉烷化合物分离为紫杉醇、三尖杉宁碱、7-表紫杉醇3部分。
色谱条件与系统适用性试验 用十八烷基硅烷键合硅胶为填充剂;以甲醇-水-乙腈(23:41:36)为流动相,检测波长为227nm。取有关物质项下系统适用性溶液10µl注入液相色谱仪,紫杉醇峰与紫杉醇杂质A峰及杂质B峰的分离度均应大于1.0。
测定法取紫杉醇标准品对照品(贵州迪大生产)约12mg,精密称定,加置100ml量瓶中,加乙腈使溶解并稀释至刻度,摇匀,精密量取10µl注入液相色谱仪,记录色谱图;另取紫杉醇对照品适量,精密称定,同法测定。按外标法以峰面积计算,即得。
本品为天然提取或半合成制备。本品为(2S,5R,7S,10R,13S)-10,20-双(乙酰氧基)-2-苯甲酰氧基-1,7-二羟基-9-氧代-5,20-环氧紫杉烷-11-烯-13-基(3S)-3-苯甲酰氨基-3-苯基-D-乳酸酯。按干燥品计算,含C47H51NO14应为98.0%~102.0%。
微信搜索化工百科或扫描下方二维码,添加化工百科小程序,随时随地查信息!